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Abstract

The current concepts and practice of cancer immunotherapy
evolved from classical experiments that distinguished "self" from
"non-self" and the finding that humoral immunity is complemen-
ted by cellular immunity. Elucidation of the biology underlying
immune checkpoints and interactions between ligands and ligand
receptors that govern the immune system's ability to recognize
tumor cells as foreignhas led to the emergenceofnewstrategies that
mobilize the immune system to reverse this apparent tolerance.
Some of these approaches have led to new therapies such as the use
of mAbs to interfere with the immune checkpoint. Others have
exploitedmolecular technologies to reengineer a subset of T cells to
directly engage and kill tumor cells, particularly those of B-cell

malignancies. However, before immunotherapy can become a
more effective method of cancer care, there are many challenges
that remain to be addressed and hurdles to overcome. Included are
manipulation of tumor microenvironment (TME) to enhance T
effector cell infiltration and access to the tumor, augmentation of
tumor MHC expression for adequate presentation of tumor asso-
ciated antigens, regulation of cytokines and their potential adverse
effects, and reduced risk of secondary malignancies as a conse-
quence of mutations generated by the various forms of genetic
engineering of immune cells.Despite these challenges, the future of
immunotherapy as a standard anticancer therapy is encouraging.
Mol Cancer Res; 15(6); 635–50. �2017 AACR.

Background
Self versus non-self and immune tolerance

Much of our current understanding of the immunologic basis
of disease, and now of immune-based therapies, derives from
insights provided by classical experiments performed more than
half a century ago. The concept that the body can differentiate
between self and non-self and that foreign tissuewhen introduced
into a recipient during early development can be "tolerated"
originated with Sir Macfarlane Burnet (1). It was a series of skin
transplantation experiments by Peter Medawar's group that con-
firmed Burnet's thesis, for which both scientists were jointly
awarded the Nobel Prize for Medicine or Physiology in 1960.
Using mice of different genetic backgrounds, they showed that
skin grafts from a donor that was genetically unrelated to the
recipientwere rejectedmore rapidly if the recipient had previously
rejected a graft from an animal genetically identical to the donor
(2). They further described the acquisition of immunologic tol-
erance when a recipient was first exposed as an embryo or in early
life to genetically disparate tissue that was genetically identical to
the earlier graft (2). By exposure to foreign tissue in very early life,
the animal became tolerized to the genetic makeup of that donor
tissue, and under such a condition the second graft was not
rejected. The ability of tumors to coopt the immune system and

become tolerant to the host has represented amajor hurdle in the
development of successful anticancer therapies. Thus, one of the
major goals of anticancer immunotherapy strategies is to reverse
the tolerant state that enables tumors to evade immune detection
and rejection.

Cellular immunity and the discovery of T cells, the T-cell
receptor and the MHC

A student of Medawar's, N.A. Mitchison, observed that tumor
graft rejection was accelerated when he introduced lymph node
cells from an immunized donor mouse that had previously
rejected that tumor. This worked only with lymph node cells and
not with serum from the immunized animal. This discovery
implicated a cell-mediated immune response and presaged the
era of cellular immunity (3). That thymus-derived cells (T cells)
involved in such immune responses came from a series of experi-
ments from Miller and Mitchell (4, 5). They showed the involve-
ment of T cells by a sheep red blood cell hemolysis assay (6) using
interstrain crosses and transplantation of T cells (antigen activated
or not) into thymectomized mice. They demonstrated that T cells
could be activated by antigen, separate from antibody-producing
cells, and that the T cells likely collaborated with bone marrow–
derived cells (B cells) in elaborating an immune response follow-
ing an immunologic challenge (7).

It was not until the mid-1970s that Zinkernagel and Doherty
first showed that T cells express a T-cell receptor (TCR) that
recognizes antigen fragments in association with MHC-I or II
(8, 9) and reviewed in ref. 10. The finding that combined stim-
ulation of TCR by MHC-complexed antigen and of CD28 and
other receptors by costimulators (11) can activate CTLs has
ushered in an era of anticancer immunotherapy centered on T-cell
activation.

MHC-dependent immunotherapy strategies
Several immunologic strategies for targeting tumors have

recently emerged. Some are MHC dependent and some are MHC
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independent. They all, however, involve mechanisms that either
activate T cells, inhibitmolecules that suppress T-cell activation, or
modify T cells genetically to allow them to recognize and kill
target cells (e.g., tumor cells) either in an MHC-dependent (TCR-
modified T cells) or MHC-independent manner by genetically
engineered Chimeric Antigen Receptor Modified T cells (CAR T
cells). Activation of T cells requires the participation of costimu-
latory molecules, of which CD28 is one of the most prominent.
Binding of ligand to the TCR triggers a signaling cascade resulting
in de novo T-cell activation and clonal expansion (11). Also key to
CTL expansion is stimulation by cytokines, including IL2 towhich
CD8þ T cells respond in an autocrine and paracrine fashion (12).
Clinically, high-dose administration of IL2 has produced pro-
longed survival in some patients with metastatic disease (13–15;
reviewed in ref. 16). When CD28 on CD8þ T cells interacts with
the surface glycoproteins CD80 (B7-1) and CD86 (B7-2), found
predominantly on antigen-presenting cells (APC) such as mac-
rophage and dendritic cells as well as B cells, the T cells are

activated, increasing both in numbers and cytotoxic activity. To
exploit this observation, CD80was transfected directly into tumor
cells and shown to be sufficient to stimulate T-cell–mediated
cytolysis of tumor cells and tumor rejection (refs. 17–19; Fig. 1).

The cytotoxic T-lymphocyte antigen-4 (CTLA-4 or CD152) is
another CD28-related protein on T cells that also interacts with
CD80, but plays an opposing role to that of CD28 causing the
suppression of previously activated T cells (11). This inhibition,
known as an immune checkpoint, can be relieved by blocking the
interaction between CD80 or CD86 with CTLA-4, primarily with
inhibitory mAbs directed to CTLA-4. Alleviating the inhibitory
immune checkpoint forms the basis for an anticancer immuno-
therapy approach that has produced some significant clinical
efficacy, but also significant undesirable side effects (refs. 20,
21; Fig. 2).

A related immune checkpoint disruptive strategy that is now
licensed for several clinical applications involves inhibition of the
programmed cell death protein-1 (PD-1, or CD279), a cell surface

Figure 1.

Complexities of cell–cell interactions and microenvironment in T-cell activation and inhibition: four cell types are depicted: T cell, NK cell, APC, or a tumor cell
transduced with a construct expressing CD80. Several other cell types, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC) tumor-
associated fibroblasts (TAF), and tumor-associated macrophages (TAM) that would normally appear in a tumor microenvironment are not shown. When a
tumor cell is transduced with a CD80 construct (upper cell) the ectopically expressed CD80, in the context of MHC/antigen complex engagement of the T-cell
receptor (TCR), can engage CD28 on a Teff cell to activate the T cell and cause it to become cytolytic. TCRs have an immunoglobulin-like heterodimeric
structure with a and b chains containing variable (V) and constant (C) regions, but with an anchoring transmembrane domain. Associated with the TCR is the
CD3 signaling molecule comprised of CD3g/CD3e and CD3d/CD3e dimers and a dimeric CD3z chain. Close to the carboxyl terminus of each CD3 e, g , and d
subunit is an immunoreceptor tyrosine-based activation motif (ITAM) marked by a short black bar. The CD3z subunit has three such ITAMs. In addition to
T-cell activation as a consequence of direct interaction between the TCR and antigen-associated MHC and the CD80/CD86 and CD28 interaction, cytokines
produced by NK cells, APCs, dendritic cells, and T cells can act on T and NK cells in a paracrine or autocrine fashion.
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receptor found on activated T cells (22), or use of antibodies
against the ligands for this receptor (PD-L1 andPD-L2; Fig. 2). The
elevated expression of PD-1 contributes to the downregulation of
immune responses (23). Shortly after its discovery by Tasuku
Honjo, he and his collaborators, Clive Wood and colleagues,
showed that PD-L1 (also designated (B7-H1 or CD274) is the
ligand for PD-1 and that it is a transmembrane surface antigen
with immunoglobulin-like structure. It is widely distributed
among tissues and organs, and its engagement with PD-1 leads
to inhibition of TCR-mediated T-cell activation (24). The PD-L2
ligand (also designated B7-DC or CD273; refs. 25, 26) is struc-
turally similar to PDL1 but differs somewhat in its physiologic
role. Both are upregulated in response to different inflammatory
cytokines such as INFg , IL4, and IL10 (27), but PD-L1 appears to
be upregulated in diverse cell types, whereas PD-L2 is more
commonly upregulated in dendritic cells (DC) and macrophage
(27). Significantly, PD-L1 is also upregulated in some tumor cells
and its interaction with PD-1 induces T-cell apoptosis (28).
Furthermore, presentation of PD-L1 on tumor cells can be

enhanced by IFNg resulting in even greater inhibition of CTL
activity. PD-L1 expression occurs in several solid tumor types
including melanoma (29–31), bladder cancer (32), non–small
cell lung cancer (33, 34), head and neck cancer (35, 36), and
metastatic but not primary osteosarcoma (37), amongothers, and
like PD-1 presents a therapeutic target.

As described earlier, expression of CD80 on APCs or tumor
cells can engage CD28 to activate T effector cells and mediate
tumor rejection (17–19, 38, 39). These types of intercellular
interactions, however, do not operate in isolation. Cytokines,
such as IL2, for example, play a complementary role by stim-
ulating the expansion of T cells in vivo or ex vivo (Fig. 1; refs. 40–
42). Historically, maintaining T-cell viability in culture had
been challenging until the role of a lymphocyte-secreted factor
that allowed longer term T-cell survival in culture was discov-
ered. The fact that long-term culture of T cells was enabled by
growth in medium conditioned by phytohemagglutinin
(PHA)-stimulated lymphocytes ultimately proved to be a game
changer for the deeper characterization of T-cell biology and

Figure 2.

Interactions between tumor cells and
T cells that activate or inhibit T cells: the
top panel shows interactions between
T-cell surface markers PD1 and tumor
cell ligands, PD-L1 and PD-L2 that
inhibit Teff cell activation. There is
potential interaction with PD-L2 and an
unknown receptor that requires
validation. CD80 and CD86 can both
engage with CD28 with different
affinities and with subtly different
T-cell–activating outcomes. They both
can also interact with CTLA-4 in an
inhibitory capacity. The bottom panel
shows that antibodies that interrupt the
engagement of these surface
molecules can reverse their activating
or inhibitory functions.
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clinically relevant adoptive T-cell therapy. By growing T cells in
medium previously conditioned by culture of PHA-stimulated
T cells, the cells remained viable for up to 9 months (41). The
active factor, subsequently designated as IL2, has been used
clinically now for several years to increase the antitumor
efficacy of cytotoxic T cells by stimulating them to exit an
anergic state and by promoting their expansion in vivo (40).
Similarly, IL2 is also routinely used for promoting ex vivo T-cell
expansion for adoptive cell transfer (42) although even serum-
free media containing alternative cytokines can be equally
effective (43).

The pioneering work of Mitchison (3) laid the foundation
for adoptive T-cell transfer (ACT) as a significant anticancer
therapy. One source of cytotoxic cells used for autologous ACT
are tumor-infiltrating cells (TIL) whose anticancer efficacy was
first described by Rosenberg and colleagues in a preclinical
mouse model (44) and later in humans, most notably with
metastatic melanoma (45, 46). Importantly, treatment of
tumor-bearing mice with either TILs alone or with lympho-
depleting agents such as cyclophosphamide alone had mar-
ginal benefit. A combination of both modalities, however, was
far more effective than either alone, and efficacy was further
enhanced by the administration of IL2 (44). These data
suggested that presence of an intact immune system hindered
therapeutic activity, and that lymphodepletion by cyclophos-
phamide (or radiation) allowed the TILs to exert their anti-
tumor activity more effectively (47). Classically, TILs are
recovered by culturing tumor fragments or disaggregated
tumor in the presence of IL2 which allows lymphocytes to
overgrow the culture. The harvested lymphocytes are expand-
ed ex vivo on irradiated feeder cells in the presence of IL2 to as
many as 1011 T cells for infusion (47). The recovery of TILs
from most solid tumor types has been challenging. However,
the successful treatment of patients with metastatic melanoma
by ACT of harvested and expanded TILs has been transforma-
tive (47). Furthermore, as discussed later, the development of
efficient ex vivo T-cell expansion has served as a prelude to the
emergence of genetically redirected T cells as an ACT-based
anticancer therapy.

MHC regulation
Tumors utilize a variety of mechanisms to evade immune

detection or mute immune response. A well-established immu-
noevasive mechanism is downregulation of MHC class 1 (MHC-
1) complexes on tumor cells so that tumor antigen presentation is
diminished and detection by CTLs is impaired (48). Themechan-
isms underlying diminished MHC-1 expression can occur at
multiple levels including errors in proteasome-mediated antigen
degradation, in chaperone accompaniment of antigen fragments
to MHC-1, in assembly of the complex with antigen fragments
to be presented, and downregulation of MHC-1 component
synthesis (48). It is noteworthy that transformation by some
oncogenes is sometimes accompanied by diminished levels of
MHC-1 at the cell surface (49). N-myc and C-myc, for example,
have been reported to suppress MHC1 gene expression in solid
tumors (50–54). In addition, other mechanisms, such as direct
binding to and upregulation of the PD-L1 promoter, have been
reported (55). Mutant BRAF (V600E) causes rapid internalization
of MHC-1 which can be reversed by treatment with a MAPK
inhibitor (56, 57). The HER2 oncogene, when overexpressed, can
suppress expression of MHC-1 at the cell surface. Its reexpression

can be achieved by silencing HER2 with an siRNA (58, 59) or by
administration of a MAPK kinase (MEK) inhibitor (58).

Treatment with metformin can alter MHC-1 expression
on cancer cells. There is anecdotal evidence that diabetic
patients with cancer who are treated with metformin for their
diabetic condition respond better to cancer therapy than
patients not treated with metformin. This relationship has
recently received support from a large electronic records data
mining effort showing that cancer risk is significantly reduced
in patients receiving metformin compared with those who are
not receiving the drug (60). Other retrospective studies have
also found a reduced risk of cancer in patients treated with
metformin (61–63). Several metabolic mechanisms for protec-
tion from cancer by metformin have been reviewed (64, 65),
but most need further validation.

Relevant to this review, metformin can restore expression of
MHC-1 on the surface of breast cancer cells previously trans-
fected with HER2, thereby rendering the cells more visible to
CD8þ T cells (66). Conversely, pharmacologic inhibition of
MEK appears to reduce HER2 expression and upregulate MHC-
1 at the cell surface (58). One mechanism by which metformin
may exert its immunomodulating effect might be by interfering
with the MAPK pathway. The effects of metformin on the
immune response, however, are pleiotropic. In addition to
potentially targeting the diminished MHC expression on the
tumor cell, the drug appears to also directly target cytotoxic
CD8þ T cells, protecting them from anergy and restoring them
to an activated state (67).

MHC-independent strategies
Recently, the complementary but vital roles of CD80 and IL2 in

activating andmobilizing T cells for antitumor function have been
exploited for generating cancer cell vaccines. In one example, a
lentivirus vector has been designed to harbor a fusion gene
encoding CD80 and IL2 as a single fusion peptide with a furin
cleavage site separating the twoproteins.Whencells are transduced
with this vector, the fusion protein is cleaved by endogenous furin
to allow expression of CD80 at the cell surface and secretion of IL2
to promote T-cell expansion (68). This approach is being applied
to patients with relapsed AML and requires ex vivo lentiviral
transduction of patient-derived AML blasts and the subsequent
autologous adoptive transfer. While the strategy may prove suc-
cessful, there remain many unanswered questions. Transduction
efficiency of AML blasts is only about 40 percent yet remission
appears to be effectively induced. This may be due to the efficient
expression of MHC-I and II molecules and a range of leukemia-
associated antigens.Remissionmayalsobeaidedby themachinery
necessary for antigen processing and presentation, as well as
enhanced expression of a range of adhesion and costimulatory
molecules that are normally expressed by the professional APC.
Notably, AML cells also express the costimulatorymolecule CD86,
but not CD80. Therefore, the genetic modification of AML cells to
enable the expression of CD80 could allow them to directly
stimulate T cells with appropriate TCR for engagement with
MHC/leukemia-associated antigen complex (Fig. 1). Alternatively,
the activation of natural killer (NK) cells by the CD80 and IL2-
expressing AML cells, enables the NK-mediated lysis of AML cells
(Fig. 1; ref. 45), resulting in the release of AML-associated antigens/
neoantigens, their uptake by dendritic cells, and the subsequent
activation ofMHC/antigen-dependent T-cell responses against the
endogenous AML cells expressing these antigens (69).
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CAR as a path to MHC-independent anticancer therapy
The TCR is structurally similar to humoral immunoglobulin

molecules in that it is a heterodimer comprised of a constant (C)
region and a variable (V) antigen-binding domain. The majority
of T cells have receptors comprised of a and b chain heterodimers
while a minority carry g and d chains. The TCR differs from
immunoglobulin molecules by having a transmembrane domain
that anchors it to the cell surface, and a short intracellular domain.
It is also associated with the CD3 multimeric protein complex
which initiates a signaling cascade once the TCR is engaged with
antigen/MHC complex (70). Initiation of the signaling cascade is
mediated by immunoreceptor tyrosine-based activation motifs
(ITAM) contributed by each of the various CD3 subunits (Fig. 1;
ref. 71). The antigen-binding capacity of the TCR also differs from
that of circulating antibody which can bind tertiary and quater-
nary antigen structures. Binding by TCR is restricted to short linear
fragments of antigen presented in the context of theMHCclass I or
class II.

The concept of facilitating direct T-cell–mediated but MHC-
independent antitumor activity received a major boost when a
group at the Weizmann Institute proposed replacing the TCR V
regions with antibody V regions but retaining the extracellular C
region, the transmembrane domain and the cytoplasmic domain
of the receptor. The first such "chimeric" receptor was constructed
by splicing the Vh and Vl chains of a mAb directed at 2, 4, 6-
trinitrophenol (TNP) to the TCR a and b constant domains
leaving the remainder of the receptor intact. When introduced
into allospecific T cells, the "chimeric" receptor was sufficient to

promote T-cell proliferation, cytokine production, and target cell
cytolysis (72).

While the first reported CAR used a double-chain antibody
design (72), most current CAR designs utilize an extracellular
single-chain antibody variable fragment (scFv) in which the
variable heavy chain and the variable light chain are linked by
a short flexible peptide. These in turn are linked to a flexible hinge
region attached to a transmembrane domain and intracellular tail
associated with a CD3 subunit (CD3z), which provides ITAMs to
affect intracellular signaling and T-cell activation. This architec-
ture represents what is currently designated as a first-generation
CAR design that has been superseded by two later generations
(Fig. 3). Following the description of the original prototype CAR
(73), the first-generation CAR design contained the variable
domains of the light and heavy chains of a mAb linked to a hinge
region, a transmembrane, and the cytoplasmic domain of CD3z
(Fig. 3). Expression of this construct, however, was insufficient to
sustain T-cell persistence as the T cells appeared to undergo rapid
anergy (73, 74). To overcome this shortcoming, one (second
generation) or two (third generation) costimulatory molecules
were introduced in tandemwith the CD3z signaling domain. The
costimulatory molecules most commonly used to date are CD28
and 4-1BB/CD137 (75, 76), which promote an increased pro-
duction of cytokines, predominantly IL2 and IFNg , and which
also promote proliferation and expansion of the genetically
modified, redirected T cells (75, 77).

In addition to the intracellular signaling domains of the TCR
and costimulatory molecules, CAR T cells express engineered

Figure 3.

The evolution of CARs: a soluble
immunoglobulin molecule is depicted
in the top left of the figure with light
chain and heavy chain variable regions
highlighted. Three generations of CARs
are illustrated showing a single chain
fragment comprised of a heavy chain
variable region linked by a flexible
linker to a light chain variable region.
Both variable antibody fragments are
derived from a mAb and are coupled
to a hinge region bound to a
transmembrane fragment.
Alternatively a ligand or ligand
fragment for a receptor that is
overexpressed on tumor cells (e.g.,
EGFR family in epithelial malignancies)
can substitute for the targeting
antibody fragment in the CAR
construct. In the first-generation CARs,
antigen recognition (antibody or
ligand) activates intracellular signals
generated by CD3 z component of the
CARs derived from the TCR. To increase
efficacy of activation andpersistence of
the activated state, the second-
generation CARs incorporate a
costimulatory signal such as CD28. The
third-generation CARs incorporate two
costimulatory signals (e.g., CD28 and4-
1BB) for even greater stimulation of the
engineered T cells encountering their
targeted antigen.

Strategies and Challenges of Cancer Immunotherapy

www.aacrjournals.org Mol Cancer Res; 15(6) June 2017 639

on August 21, 2017. © 2017 American Association for Cancer Research. mcr.aacrjournals.org Downloaded from 

Published OnlineFirst March 29, 2017; DOI: 10.1158/1541-7786.MCR-16-0427 

http://mcr.aacrjournals.org/


antibody–variable chains, or alternatively ligands, that are able to
bind molecules on the surface of target cells. Following engage-
ment between CAR T-cell antibody/ligand and the target cell
surface antigen, the genetically redirected T cell promotes target
cell cytolysis by release of cytotoxic granules containing perforin
and granzymes which can lyse a target cell, including drug-
resistant tumor cells (78). A second cytolytic mechanism involves
the interaction between Fas receptor (FasR/CD95) on the target
cell and Fas ligand (CD95L) on the CD8þ T cell. When the Fas
ligand and receptor are engaged, signaling pathways are activated
in the target cell that trigger a caspase cascade resulting in target
cell death (79). A series of recent reviews have given more
complete descriptions of CAR T-cell biology, target antigens thus
far selected, and a current list of CAR T-cell clinical trials underway
and status to date (80–84).

CAR T cells for B-cell malignancies
Given the specificity of the redirectedCART cell and its cytolytic

capacity, the optimal target for a CAR T-cell strategy would be a
tumor type that expresses an antigen unique to that tumor and
that is absent from nontumor tissue. For this reason, B-cell
malignancies were the initial cancer type to become the focus of
a battery of clinical trials (85). The CD19 surface protein is a pan-
B-cellmarker that is expressed on essentially all B cells, frompro-B
cells tomemory B cells, but not on hematopoietic stem cells (82).
Moreover, patients appear to be able to sustain persistent reduc-
tion in numbers and function of CD19þ B cells, providing that
immunoglobulin replacement therapy is instituted (86). It is not
surprising, therefore, that a large number of independent CAR T-
cell clinical trials have emerged that target a range of CD19þ B-cell
malignancies including non-Hodgkin lymphoma (NHL; refs. 81–
83, 85), chronic lymphocytic leukemia (CLL; refs. 86–92), and
acute lymphoblastic leukemia (ALL; refs. 93–97). Of all CAR T-
cell therapeutic trials, themost successful to date has been that for
recurrent or refractory B-cell ALL (95, 96). For a disease with
historically poor prognosis and outcome, in the range of 7% 5-
year survival, reports of 70% to 90% complete response rates are
remarkable (95, 96).

Immunotherapy for solid tumors and the immune
microenvironment

There have been fewer applications of CAR T-cell therapeutic
approaches for solid tumors than for hematologic malignancies
and progress has been less encouraging. There are multiple
reasons to account for the less rapid advance. Unlike hematologic
malignancies, solid tumors have more complicated microenvir-
onments that can be highly immunosuppressive. In addition to
the inhibitory effects of PD-1, PD-L1, and CTLA-4 on tumor
rejection discussed above, the tumormicroenvironment is replete
with cells that interfere with antitumor activity. Despite recent
advances, the complexity of the immune network in the context of
tumor immunology is not fully understood.

Cells and cytokines of the immune microenvironment
The tumor milieu contains a variety of cell types that have

activities that can be supportive of or antagonistic toward tumor
maintenance or rejection. For example, a subpopulation of reg-
ulatory CD4þ T cells (Tregs) can effectively interfere with
the function of APCs (98, 99). By blocking CTLA-4, one can
render cytotoxic T cells (primarily CD8þ) more responsive
to antigen while suppressing the inhibitory effects of Tregs

(100, 101). The complexity of the cancer-related immunenetwork
is further exemplified by studies showing that CD8þ T cells in a
melanomamicroenvironment can promote immunosuppression
by mechanisms including recruitment of Tregs, the upregulation
of PD-L1, and the upregulation of Indoleamine-pyrrole 2, 3-
dioxygenase (IDO), an enzyme that has tolerogenic capacity
(102). Immunosuppressive mechanisms are mediated not only
by direct intercellular contacts, but also by cytokines such as
natural killer (NK) cell- and T-cell–derived IFNg and tumor-
associated macrophage (TAM)-derived VEGF and TGFb (103).
In addition to Tregs and TAMs in the tumor microenvironment,
the immunosuppressive cell population often contains a hetero-
geneous population ofmyeloid-derived suppressor cells (MDSC)
that also produce an immunosuppressive local environment
(104–106). Among the generally immunosuppressive myeloid-
derived cells in the tumor microenvironment are CD103þ

(mouse)/CD141þ (human) dendritic cells (DC) that can cross-
present tumor antigens to and activate cytotoxic CD8þ T cells.
These cells, however, appear rarely in the tumor microenviron-
ment as their recruitment to the tumor site appears to be com-
promised (103, 106, 107). The intricacies of the tumor microen-
vironment, despite being complex, can offer possibilities for
therapeutic intervention. Expansion of the CD141þ cell popula-
tion (107, 108) or the conversion of tolerogenic DCs to immune
stimulatory DCs by over expression of IL12 (109), for example,
represent two such potential antitumor therapeutic avenues.

The Treg cells, which have immunosuppressive activity in
tumors, play a role that is directly counter to that of cytotoxic
CD8þ T cells (103). When transiently ablated in a mouse model,
the loss of suppressive Tregs impairs primary and metastatic
tumor progression and sensitizes the tumors to radiotherapy
(110). Similarly, interfering with Treg signaling by inhibiting the
PI(3)K isoform p110d activates CD8þ T cells and results in tumor
regression in awide range of cancers (111). A recent study suggests
that for Tregs to render cytotoxic T cells dysfunctional, they first
must reencounter antigen in the local environment and interact
with APCs, which is accompanied by depression of CD80 and
CD86on theAPC cell surface (112). The Tregs promote an anergic
state in the cytotoxic T cells with accompanied impairment of
cytokine secretion and granzyme release coincident with elevated
expression of inhibitory PD-1 (112).

Activation of cytotoxic T cells not only promotes the release of
cytolytic enzymes (78), but also stimulates the release of cytokines
and chemokines that impact NK cells that are resident in the
tumor microenvironment and that also have cytotoxic function.
The NK cells are also activated by interaction between cell surface
receptors and cell surface ligands on the activating or target cell
(113). Among the cytokines released by NK cells are IFNg
and TNFa, factors that can activate and recruit inflammatory cells
to the local environment and regulate DCs, T cells, and B cells
(113, 114). Upon target cell recognition, NK cells also release
several members of the interleukin family and the chemokines
MIP-1a, MIP-1b, and RANTES, which impact the immune cir-
cuitry (113–115). Thus, NK cells are central to maintaining the
homeostatic balance between T-cell subsets, B cells, DCs, and
myeloid populations by a plethora of cytokines and signaling
molecules and their cognate receptors (113). Individually, and in
combination, these cytokines exert their effects on cell function by
both autocrine and paracrine mechanisms. As discussed earlier,
IL2 is important for expansion of CD8þ T cells (12), and dendritic
cells produce IL12 and promote CD8þ T-cell activation via
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chemokine production (116, 117). In addition, Tregs produce
IL10 and TGFb, both of which can act directly on CD8þ T cells to
exert their inhibitory effects (118). Alternatively, TGFb produced
by anumber of cell types can act onna€�ve T cells to induce Foxp3, a
transcription factor vital to maturation into Tregs (119). In short,
the immune network is extremely complex with much to be
resolved.

Control of T-cell migration and tumor infiltration
To date, most immunotherapeutic approaches have involved

autologous cell transfer with TILs, direct stimulation of CD8þ T
cells by cytokines, by interference with inhibitory controls
through antibody-mediated inhibition of PD-1, PD-L1, or
CTLA-4, or by redirecting T cells with the aid of CARs that directly
target tumor-associated antigens on the tumor cell surface. Less
emphasis has been given to modulating the tumor microenvi-
ronment to enhance an antitumor immune response. One key to
the efficacy of immunotherapeutic approaches is to ensure that
effector T cells have access to and can infiltrate the tumor.

Adenosine levels in the tumor microenvironment modulate
antitumor activity

About 20 years ago, it was noted that extracellular adenosine
was elevated under tumor hypoxic conditions and was inhibitory
to T-cell activation in a tumor environment (120–122). The
effect of adenosine is mediated by adenosine receptors of which
the A2a receptor is predominantly found on T and B lymphocytes
(122, 123). Extracellular adenosine is accumulated by sequential
phosphohydrolysis of ATP to AMP with further hydrolysis to the
adenosine nucleoside. This is accomplished by the membrane-
associated ectonucleotidases CD73andCD39which are foundon
CD4þ Treg cells and other cells in the tumor microenvironment
(124). With genetic ablation of A2A receptors, there is loss of the
tumor-protective effect of adenosine accompanied by enhanced
CD8þ cell activation and function (122–125). In a mouse tumor
model with ablated A2a receptors, there was enhanced eradication
of a lymphoma and improved efficacy of an anti-lymphoma
tumor vaccine (126). As an alternative to blocking or deleting
the adenosine receptor, others have reduced the production of
adenosine by blocking the CD73 ectonucleotidase pharmacolog-
ically (127, 128) or by antibody-mediated blockade of the A2A

receptor (129) with similar encouraging results.

Extracellular adenosine in the tumor environment and its
A2A receptor are coupled to a Kþ ion channel to regulate
T-cell activity

The role of ion channels in immunity, the functional network
that they form, and their history have been extensively reviewed
(130–132), but thefield remains relatively underexplored. Impor-
tant to this review is that a subset of ion channels regulates T-cell
function, including T-cell motility, and cytokine and granzyme
production (130–133). When the TCR is engaged, there is a rapid
release of Ca2þ from the endoplasmic reticulum, stimulating the
formation and activation of Ca2þ release–activated Ca2þ (CRAC)
channels in the plasma membrane allowing the further influx of
extracellular Ca2þ. Protection against depolarization of themem-
brane due to Ca2þ entry is provided in part by the Kv1.3 Kþ

channel, allowing outward movement of Kþ ions. The Kv1.3
channel is activated by sensing membrane depolarization due to
Caþ2 entry (134). A second type of Kþ channel is the KCa3.1
channel that is activated directly by the increase in cytosolic Caþ2

rather than a change in membrane potential (135). Thus, the rise
in cytosolic Ca2þ as a result of TCR engagement signals the KCa3.1
channel to open thereby allowing further Kþ outward movement
andmembrane hyperpolarization. It is noteworthy that the Kv1.3
channel colocalizeswith the TCR inhumanT cells (134, 135), and
like the Kv1.3 channel, the KCa3.1 channel also localizes with the
TCR at the immune synapse (136).

The requirement for Ca2þ involvement in CD8þ T-cell func-
tion and antitumor efficacy was established by knocking out the
subunits that comprise the CRAC channel (137). The Ca2þ

influx is important for CD8þ-mediated inhibition of tumor
growth. It supports its cytolytic activity and inhibits tumor
engraftment in a mouse model (137). It does not appear to
be required for CD8þ migration. A recent report has linked Kþ

channels to inhibition of adenosine A2a receptors by adenosine
with consequent inhibition of mast cell migration (138). It
appears that the A2a receptor is physically close to the KCa3.1
channel and in human mast cells effectively closes the channel
pore in response to elevated adenosine and shuts down cell
migration (138). In human activated T cells, adenosine selec-
tively inhibits KCa3.1, but not Kv1.3 channels, mediated by the
adenosine A2a receptor (139). Inhibiting KCa3.1, with either
adenosine or a selective A2a agonist, interfered with T-cell
motility and with IL2 secretion, both of which could be reversed
by treatment with a selective A2a receptor antagonist (139).

As described earlier, elevated levels of adenosine can interfere
with the infiltration of cytotoxic T cells into the tumor and
ameliorate their antitumor effect (120–125). The intricate circuit-
ry regulating tumor infiltration by cytotoxic T cells offers several
potential therapeutic targets for increasing local CD8þ T-cell
numbers to better enable tumor rejection. These include phar-
macologic inhibition of the ectonucleotidases CD39 andCD73 to
reduce the local concentration of inhibitory adenosine. Alterna-
tively, pharmacologic inhibition of the A2a receptor or manipu-
lation of the KCa3.1 Kþ channel to prevent suppression of T-cell
motility, are alternatives to enhance CD8þ T-cell tumor infiltra-
tion and promote IL2 secretion.

While Ca2þ involvement in ion channel function and T-cell
activity is well accepted (130), its impact on T-cell membrane
lipids has only recently been described. In an elegant set of
experiments using live-cell fluorescence imaging and nuclear
magnetic resonance spectroscopy, Xu and colleagues have shown
an elevated local Ca2þ concentration proximal to the TCR fol-
lowing TCR engagement with consequent increase in cytosolic
Ca2þ. One outcome of this Ca2þ localization is to negate the
regional phospholipid-associated negative charge, thereby expos-
ing the CD3-associated ITAMs and facilitating the phosphoryla-
tion of their tyrosine residues (140). These data confirmed other
work implicating membrane lipids in the regulation of T-cell
activity (141–144,), leading to the observation that availability of
cholesterol can potentiate the antitumor activity of T cells (145).
Cholesterol is stored as cholesterol esters tomaintain homeostatic
levels of membrane-associated cholesterol (146). The esterifica-
tion of cholesterol is catalyzed by acetyl-CoA acetyltransferases 1
and 2 (ACAT1 and 2). Pharmacologic inhibition or deletion of
ACAT1differentially affects CD8þT cellswith little effect onCD4þ

T cells. Consistentwith the observation that activatedCD8þT cells
are more robust in their synthesis of cholesterol than their
nonactivated counterparts (147), pharmacologic inhibition of
ACAT1 elevates the membrane cholesterol levels in CD8þ cells,
increasing their cytotoxicity and enhancing the production of
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granzymes and cytokines. Notably, inhibition of ACAT1 has little
effect on CD4þ T cells (145). Thus, enhancing cholesterol metab-
olism by inhibiting ACAT could be an additional means to
potentiate the therapeutic benefit of current immunotherapy
strategies such as the use of CAR T cells or immune checkpoint
blockers.

Coming full circle: complementary humoral- and cellular-
based roles in anticancer therapy

The majority of this review article has been based on cellular
aspects of cancer immunity. Although the contribution of humor-
al immunity (i.e., antibodies) has been acknowledged for about
50 years (148, 149), it is only recently that the interaction of
humoral- and cell-mediated anticancer mechanisms has been
actively explored (150, 151). One example of this convergence
is "antibody-dependent cell-mediated cytotoxicity" (ADCC),
which refers to the ability of immune effector cells to engage and
kill IgG antibody-coated target cells (reviewed in refs. 150, 151).
In ADCC, antibodies bound to tumor cells can associate with
immune effector cells (e.g., NK cells, macrophage, DCs, other
myeloid cells) by interaction of the Fc region of tumor-bound
antibodies with Fcg receptors (FcgRs) on the immune cell surface
to promote tumor cell cytotoxicity (151–153). Several approved
therapeuticmAbs that target various tumor types (150) have been
used in this context, but with varying clinical success. One of the
multiple reasons for indeterminate success or failure of antibody
treatment includes polymorphic variants of the FcgRs that can
affect the affinity between FcgRs on effector cells and the Fcmoiety
of antibody bound to the target tumor cells (154). This and other
challenges are being addressed by reengineering the targeting
antibody. For example, manipulating the Fc glycosylation state,
specifically removing a fucose moiety, enhances binding to Fcg
receptors and enhances ADCC antitumor activity (155, 156).

While ADCC relies primarily on NK cells to mediate tumor
rejection, a recently described antitumor mechanism in mouse
also utilizes tumor-binding IgG antibodies but relies on tumor-
associated dendritic cells (TADC) along with activated tumor-
reactive T cells for its antitumor effect (157).While bonemarrow–
derived DCs efficiently internalized immune complexes of tumor
cells and IgG and stimulated T-cell activation, TADCs did not
unless stimulated with CD40 ligand and TNFa. Similarly, injec-
tion of allogeneic IgG directly into tumors was not sufficient to
elicit an antitumor response unless combined with CD40 ligand
and TNFa.When administrated in combination, TADCactivation
and subsequent tumor-reactive T-cell activation were stimulated,
resulting in the resolution of several tumor types and their
metastases (157). Significantly, T cells from lung cancer patients
were stimulated to proliferate in vitro in response to tumor
antigens following coculture with allo-IgG –loaded TADCs CD40
ligand and TNFa, consistent with findings in mice. These data
provide yet another promising alternative anticancer therapeutic
strategy (157).

Challenges
Mutation as a double-edged sword

Eachof the strategies tomobilize or redirect the immune system
to eliminate liquid or solid tumors is not without its challenges.
The role of mutation in tumorigenesis and progression and in
cancer immunotherapy can be beneficial or detrimental. It is well
accepted that activation of proto-oncogenes by mutation, ampli-

fication, or translocation can drive oncogenesis (158). As origi-
nally postulated, solid tumors in particular can assume amutator
phenotype (159) as a consequence of a mutation in genes
responsible for maintenance of global genomic stability. These
can, for example, include genes involved in high fidelity replica-
tion or in repair of DNA damage. While thought to promote
oncogenesis, a high tumormutational loadmay actually enhance
the effectiveness of some immunotherapy approaches, particu-
larly those that involve disruption of the immune checkpoint
(160–162). In addition to presentation of MHC-associated onco-
gene peptides, presentation of mutation-derived neoantigens
which likely arise from normal proteins that have incurred a
missense mutation. These neoantigens can likely contribute to
recognition by tumor-reactive T cells (160) when unleashed by
inhibition of immune blockade (161, 162), suggesting that a
heavier mutation load may predict a more successful outcome
following inhibition of a PD-1 or CTLA-4 blockade.

A detrimental effect of mutagenesis can occur as a consequence
of transducing immune cells with integrating viral vectors prior to
ACT as such vectors can cause insertionalmutations and cancer. In
the earliest successful gene therapy trial (163), patients with X-
linked severe combined immunodeficiency (SCID) were treated
with a replication-deficient retrovirus expressing themissing gene.
While the majority of patients experienced successful restoration
of immune function (163), several patients developed a T-cell
lymphoproliferative disease (164) caused by an activating inser-
tional mutation event in the LMO2 proto-oncogene (165). Nota-
bly, HIV-infected patients who were treated with retroviral-mod-
ifiedCAR T cells experienced nohematologicmalignancies for the
following 10-year period (166). While insertional mutagenesis
should remain a concern, the engineered self-inactivating lenti-
viral vectors currently in use appear to have more restricted
integration sites that have minimal oncogenic bias and reduced
risk (167). In addition, the risk of insertional mutagenesis is
substantially lower for the terminally differentiated T cells com-
pared with hematopoietic stem cells that were the target of
common gamma chain modification for the treatment of SCID.

In a different context, there should be concern for mutations
acquired during in vivo and ex vivo expansion of T cells for
ACT. Mutation frequencies and rates in vivo have been difficult
to establish. However, mouse models and human cells have
yielded a frequency of between 10�5 and 10�4 per locus per cell
(168–171) and the frequency ofmutation appears to increase as a
function of age (171–173,). Thus, the older a patient, the greater
will be the starting mutational burden in T cells harvested for
expansion and autologous transfer. Most studies have measured
frequency of acquisition of single nucleotide variants (SNV;
refs. 168–170), whereas other studies have reported that loss of
heterozygosity (LOH) due to mitotic recombination is the pre-
dominant form of mutation in vitro and in vivo (174–177). The
concern of potential transformation arises from the very high rate
of somaticmutation following ex vivoor induced in vivo expansion
of immune cells for therapeutic purposes. Most mutations will be
benign, and many individual mutations, or combinations of
mutations, will be lethal, thereby removing these cells from the
population andavoiding transformation. Similarly, but limited to
in vivo expansion, many cells that express mutant proteins will be
removed from the population in an MHC-dependent manner,
thereby further reducing risk of transformation and consequent
malignancy. However, patients with innately diminished DNA
repair capacity have higher mutation rates and increased risk of
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developing tumors (178, 179), and older patients with more
accumulated mutations prior to cell expansion will also be at
increased risk.

Expansion of T cells ex vivo presents additional risks. Asmost of
the mechanisms that eliminate mutant cells in vivo, particularly
those that are immune mediated, do not apply to cells in culture,
there is an increased likelihood of retaining cells with new
mutations. In addition, mutations that occur in any of the many
genes that regulate DNA repair will compromise the repair pro-
cesses and enhance the mutation rate. Furthermore, expanding T
cells ex vivo entails removing them from their natural environment
with percent oxygen levels between 5% and 10% to culture
conditions where ambient oxygen is about 20%. As culture of
cells at ambient oxygen versus culture at 3% oxygen significantly
increases mutation rates (180. 181), ex vivo expansion of T cells
under standard culture conditions for autologous transplant
should be considered an additional risk factor. Clearly, in vivo
and ex vivo T-cell expansion confers some risk for secondary T-cell
malignancies. The risk is likely quite lowbutwill vary according to
individual genetic makeup (e.g., DNA repair capacity), patient
age, magnitude and nature of genetic modifications, nature of
vectors used (e.g., self-inactivating lentivirus versus conventional,
retrovirus vectors), as well as the scale andmethods employed for
the in vitro culture and expansion of the transduced cells.

Adverse effects of immunotherapies and their management
Most, but not all, immunotherapy-related adverse effects are of

the short-term type such as cytokine storm. However, there are
concerns of longer-term effects such as the potential for increased
risk of autoimmune disease following treatment with PD-1 or
CTLA-4 inhibitors (23, 182). In addition, there are possible risks
for acquiring somaticmutations during ex vivo and induced in vivo
T-cell expansion that is necessary for autologous or allogeneic
adoptive T-cell strategies. Possible mutational risks associated
with large-scale expansion of universal CAR T cells for "off-
the-shelf" CAR T-cell therapy must also be considered. For
autologous CAR T-cell therapy, a patient's T cells are first
recovered from peripheral blood, transduced with a retrovirus
or lentivirus harboring a CAR against a tumor-specific antigenic
determinant, expanded several fold, and infused into the
patient. The concern arises when one considers the rate of
mutation in somatic cells. Determining the mutation rate in
mammalian cells in vivo is also relevant when considering the
extent of T-cell expansion after activation.

CAR T cells and therapies
The intricacies of the immune signaling systems and their

multiple regulatory feedback circuits are critical for maintaining
a homeostatic balance in immune-mediated rejection and toler-
ance, which when perturbed can have serious consequences. The
PD-1/PD-L1 inhibitory interaction, for example, serves not only
the unwanted function of protecting the tumor, but is part of the
mechanism that allows the body to discriminate between "self" as
"non-self". As PD-1 is expressed in many tissues and cell types,
alleviation of the PD-1/PD-L1 inhibitorymechanism runs the risk
of inducing systemic adverse effects of varying degrees including
autoimmune disease or "immune-related adverse events" (183).
Similar concerns exist for suppressing immune inhibition medi-
ated by CTLA-4 (184, 185).

Like overcoming the immune checkpoint for therapeutic pur-
poses, the use of CAR T cells is notwithout its challenges and risks.

Probably the most common adverse effect after CAR T-cell infu-
sion is immune-mediated cytokine release syndrome (CRS) or
"cytokine storm" which manifests as high fever, myalgia, anorex-
ia, tachycardia, hypotension among other symptoms, and can
sometimes be fatal (186–188). Although concerning, CRS can be
fully reversed by corticosteroids, such as prednisone (95), which,
however, runs the risk of compromising the therapeutic effect of
the CAR T cells. An alternative approach based on the remarkable
elevation of IL6 that has had considerable clinical success for
managing and alleviating CRS symptoms is the administration of
tocilizumab, a mAb directed to the IL6 receptor (189). Another
challenge with CAR T-cell strategies is on-target (correct antigen
target) off-target/off tumor (incorrect cell type target) concerns.
Renal cell carcinomas (RCC), for example, express high levels of
carboxy-anhydrase-IX (CAIX) at their cell surface (190). When
patients with metastatic RCC were treated with CAIX CAR T cells,
several developed liver toxicity due to CAR T-cell interaction with
bile duct epithelial cells expressing CAIX (191). Similarly, a
patient with a recurrent and metastatic ERBB2-expressing tumor,
when treated with ERBB2 CAR T cells, displayed pulmonary
toxicity due to ERBB2 expression in the lungs (192). Likewise,
whenpatients withmelanomaormyeloma expressing theMAGE-
A3 antigen were infused with MAGE-A3 CAR T cells, they devel-
oped severe cardiotoxicity due to cross reactivity to a titin deter-
minant that was expressed on cardiomyocytes (193).

Most attention in clinical CAR T-cell experience has been with
B-cell malignancies where CD 19 has been the redirected T-cell
target. The approach has been relatively successful in eradicating
the malignancy with the caveat that the strategy also eliminates
most of the normal cells of B-cell lineage as they also express the
CD19marker (94). The loss of normal B cells and consequent off-
tumor target toxicity, however, can be managed by immunoglob-
ulin transfer to compensate for lost B cells (94). Amodification of
the single chimeric antigen receptor that enhances specificity is the
development of a dual CAR T-cell strategy. This modification,
which involves inclusion of a second chimeric antigen receptor
targeting CD123 (IL3 receptor a chain), has been instrumental in
overcoming evasion of CD19CAR T-cell cytotoxicity or relapse by
eliminating B-ALL cells that are CD19 negative (194). Evasion of
CD19 CAR T cells by B-cell malignancies can arise due to a subset
of cells that express an alternatively spliced CD19 variant that is
not recognized by the CAR in the armed T cell. Inclusion of the
CD123 chimeric antigen receptor eliminates the residual CD19-
negative malignant B cells that also express the CD123 marker as
well as those cells that have lost the CD 19 marker by acquired
mutation and that contribute to CD19 CAR T-cell–resistant
relapse (195). The CD123 marker is expressed on cells of the
myeloid lineage and is a target for CD123 CAR T-cell therapy
(196). One caveat with targeting CD123 for AML, for example, is
that this marker is found on most myeloid cells and also on
hematopoietic stem cells (197). Clinically, however, this may not
be a serious problem (194), although this contention remains
under debate (198, 199). In addition, in hematologic malignan-
cies, where hematologic stem cell transplants (HSCT) are rou-
tinely employed to consolidate the often transitory remission
following chemotherapy, CAR T-cell therapy could provide a so-
called "bridge-to-transplant" allowing hematopoietic reconstitu-
tion by subsequent chemotherapy-mediated elimination of the
CAR T cells and HSC transplantation.

The use of CAR T-cell approaches for solid tumors have been
less successful than those for B-cell malignancies. This is in part
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because useful surface markers that are unique to the tumor are
not common. To overcome the issue of specificity, CAR T cells
with dual specificity have been designed with the idea that
requiring both antigens to be engaged would increase specific-
ity of the CAR T cells to the intended target (199–201). In a
mouse glioblastoma xenograft model, optimal epitopes for
HER2 and IL13 receptor a2 were designed by in silicomodeling,
and CAR T cells with chimeric antigen receptors targeting both
epitopes were generated. The dual specificity CAR T cells
appeared to have greater antitumor efficacy than CAR T cells
expressing either CAR alone, and the animals survived for a
longer time (202). While this dual specificity CAR T cell was
efficacious in a murine xenograft model, its utility in an
immunocompetent environment is unclear.

A very elegant CAR T-cellmodel that overcomes this reservation
utilizes a synthetic modular Notch receptor (203) designed to
recognize one ligand on a tumor cell and a third-generation CAR
that recognizes a second antigen on the same tumor cell (204).
The extracellular domain of the synthetic Notch receptor, whose
normal ligand isDelta, was replacedwith an extra cellular domain
that recognizes a tumor antigen (antigen A). The intracellular
Notch domain that is cleaved after ligand binding to the extra-
cellular domain was replaced with a fragment that acts as a
transcription factor that induces CAR expression to engage a
second tumor antigen (antigen B) to initiate tumor cell cytolysis.
Tobe killed selectively by theCARTcell, therefore, the tumormust
express both antigens. Any nontumor cell that expresses only one
of the antigens will be spared. Of course, given tumor heteroge-
neity, it would not be surprising if some tumors contained a
subpopulation of cells expressing only one or the other of the
antigens, thereby escaping cytolysis by this approach and provid-
ing the seed for local tumor recurrence ormetastasis. This concern
has been addressed by the use of a bispecific CAR that enabled
complete cytolysis ofmalignant B cells with no evidence of escape
(205). These CAR T cells harbor reengineered single-chain bispe-
cific antibodies that target bothCD19 andCD20. Thus,malignant
B cells that have lost CD 19, which normally would render them
resistant to CAR T19 cell therapy, retain CD20 and are killed. It is
also of course possible, though not yet directly demonstrated, that
CAR-mediated lysis of a substantial population of tumor cells
may in turn stimulate further immunologic responses against
other tumor-associated antigens. This would produce an "antigen
spread" andpromote eliminationof tumor cells that lack theCAR-
targeted antigen(s). A related strategy involves direct administra-
tion of single molecule bispecific antibodies that target tumor
cells (e.g., CD19) and T cells [e.g., a CD3 subunit TCR) to promote
the engagement of the two cell types, activation of the coupled T
cells and cytolysis of the target cells (206). This type of bispecific
antibody, designated bispecific T-cell engager (BiTE), is currently
under assessment by several clinical trials (206, 207).

Overcoming a hostile tumor environment
Overcoming a hostile immunosuppressive tumor microenvi-

ronment represents a major hurdle for CAR T-cell therapy. The
tumor microenvironment is a highly complex network of tumor
cells, stromal cells, activating and inhibitory cells of the immune
system, vasculature, cytokines, and intercellular milieu that is
generally immunosuppressive and an environment that favors
tumor growth. As previously discussed, elevated local adenosine
levels are inhibitory to CTLs and their ability to infiltrate the
tumor. Reducing the local adenosine concentration by inhibiting

ectonucleotidases (126–128) or suppressing adenosine uptake by
blocking the adenosine receptor (122–124) represent alternative
approaches to restoringCD8þ T-cell, or CART-cell infiltration and
activity. An additional approach for modifying the local tumor
environment utilizes CART cells armedwith the ability to secrete a
cytokine (208). A major focus of this approach has centered on
IL12 which exerts its antitumor activity by acting on NK cells and
CD8þ cells, and inducing the local production of IFNg (209). CAR
T cells that were modified to secrete IL12 have enhanced antitu-
mor activity in a preclinicalmurinemodel (210, 211). However, a
clinical trial in which melanoma patients were treated with TILs
genetically modified to secrete IL12, encountered significant
toxicities (212). Another recent report describes a phase I clinical
trial in whichMUC16 CAR T cells were furthermodified to secrete
IL12 for treatment of patients with advanced, recurrent ovarian
cancer (213), but no adverse effects have been reported to date.
Tumor-associated stromal cells also contribute to the immuno-
suppressive microenvironment, mediated in part by elevated
expression of fibroblast activation protein-a (FAP; ref. 214).
When FAP expressed in stromal cells was targeted with CAR T
cells in a preclinical cancer model, tumor cell growth was inhib-
ited (215). Similarly, when stromal cells that express FAP in a
murine model were eliminated, tumor-infiltrating CD8þT cell
activity and longer survival of mice harboring tumors were
enhanced (216). Thus, adapting the tumor microenvironment
to favor tumor eradication is fraught with obstacles but presents
an encouraging approach.

Patient safety is paramount as evidenced by the recent tempo-
rary halting of a phase II clinical trial by the FDA. Patients with
refractory ALL had received fludarabine plus cyclophosphamide
prior to CD19 CAR T-cell infusion. Three patients less than 25
years of age developed cerebral edema and died while treated
under this protocol and the FDA halted the trial. The fludarabine
had been added to the preconditioning protocol and appeared to
be the cause of the deaths. Shortly thereafter, the FDA allowed the
trial to continue, but only after fludarabine was removed from the
preconditioning protocol.

Patient safety and alleviation of therapeutic cost
While patient safety remains a constant concern, probably the

biggest obstacle for autologous CAR T-cell therapy is the cost,
which has been estimated to be as high as $400,000 to $500,000.
Even if this price is exaggerated, the high cost should not be
surprising given the degree of personalized clinical care required
for current autologous CART-cell therapy protocols. As afirst step,
patient-derived T cells are recovered, often by leukapheresis, and
the recovered T cells are stimulated to proliferate to facilitate their
genetic modification by infection with a g-retrovirus or lentivirus
encoding the CAR construct. The ex vivo–transduced T cells are
then expanded about 10-fold atwhichpoint the cell preparation is
ready for patient infusion. This multistep process must be repeat-
ed for each patient, accounting in part for the very high cost.

To alleviate the high price of individualized CAR T-cell therapy,
"universal" engineered T cells have been generated. These have the
advantage that they can be expanded into large batches and
used as "off the shelf" therapeutic allogeneic CAR T cells
with broad applicability (216). The TCR has been disrupted by
TALEN-mediated site-specificmutagenesis to eliminate the risk of
graft versus host disease. Similarly, CD52, which is broadly
expressed on multiple hematologic cell lineages, is also eliminat-
ed, thus rendering these cells resistant to the anti-CD52 mAb
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alemtuzumab, which is frequently employed in the treatment of
hematologic malignancies. Therefore, these cells can be used in
the context of alemtuzumab conditioning of the patient, which
reduces the leukemic burden while concomitantly conferring a
selective advantage to the allogeneic CAR T cells, including the
reduced risk of rejection of these HLA-mismatched cells by the
host (217). In brief, donor T cells are collected by leukapheresis,
activated in culture, TCR is inactivated by site-directed mutagen-
esis, and transduced with a lentivirus vector harboring the CAR of
interest. The cells are expanded about 10 fold to yield about 1010

genetically engineered "universal" T cells. From each batch pre-
pared, aliquots are frozen, and thawed for use as needed. Treat-
ment of an 11-month girl with relapsed CD19þ B-ALL provided
an opportunity for clinically relevant proof of principle. The
patient received a single dose of the "universal" CAR T cells,
designated UCART19 cells, and has undergone complete molec-
ular and clinical remission, within the limits of detection (218).

The advances in our understanding of the biology of how our
bodies distinguish "self" from "non-self" during the last 60 years
have been remarkable, and the degree to which this understand-
ing is being applied to anticancer therapies is encouraging. As
Helen Keller once remarked, "Optimism is the faith that leads to
achievement.Nothing canbe donewithout hope and confidence"
(219). Given the many distant and recent accomplishments,
optimism is clearly applicable to the future of cancer immuno-
therapy. As described above, the hurdles that remain for achieving
a uniformly curative anticancer immunotherapy strategy are
significant but it is likely that all canbeovercomeor circumvented.
Particularly encouraging is the idea that immunotherapy
approaches can be complemented by or combined with surgery
or with other developing strategies. These include targeting of
biochemical pathways that are key to tumor survival or manip-
ulating the tumormicroenvironment rendering it hostile to tumor
viability. Decisions by oncologists regarding optimal treatment

strategies in the future will require a personalized or "precision"
approach taking into account variations in genomic, transcrip-
tomic, proteomic, and metabolomic profiles for a given tumor
and patient. While currently in its infancy, the promise of such a
comprehensive approach is enormous, and the expectation that
cancer will be managed as a chronic disease, if not commonly
cured, is becoming reality.
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